Estimating Dynamic Panel Data Models: A Practical Guide for Macroeconomists
نویسندگان
چکیده
Previous research on dynamic panel estimation has focused on panels that, unlike a typical panel of macroeconomic data, have small time dimensions and large individual dimensions. We use a Monte Carlo approach to investigate the performance of several different methods designed to reduce the bias of the estimated coefficients for the longer, narrower panels commonly found for macro data. We find that the bias of the least squares dummy variable approach can be significant, even when the time dimension of the panel is as large as 30. For panels with small time dimensions, we find a corrected least squares dummy variable estimator to be the best choice. However, as the time dimension of the panel increases, the computationally simpler Anderson-Hsiao estimator performs equally well. We apply our recommendations to a panel of countries to show that increases in income growth precede increases in savings rates and increases in savings rates precede declines in income growth. JEL Codes: C23, O11, E00 Keyword: Panel data, simulation, dynamic model, macroeconomics, growth
منابع مشابه
Bayesian Quantile Regression with Adaptive Lasso Penalty for Dynamic Panel Data
Dynamic panel data models include the important part of medicine, social and economic studies. Existence of the lagged dependent variable as an explanatory variable is a sensible trait of these models. The estimation problem of these models arises from the correlation between the lagged depended variable and the current disturbance. Recently, quantile regression to analyze dynamic pa...
متن کاملA Reduced Form Representation for State Space Models
Estimating structural state space models with maximum likelihood is often infeasible. If the model can be expressed as a reduced form vector-autoregression (VAR) in the observable data, then two step techniques such as minimum chi-square estimation can reliably recover structural parameter estimates. However, macroeconomists cannot always rely on the existence of a VAR reduced form – as is ofte...
متن کاملEstimation of Dynamic Panel Data Models with Sample Selection
We thank the editor M. Hashem Pesaran and three anonymous referees for their useful comments. 1 Summary We propose a new method for estimating dynamic panel data models with selection. The method uses backward substitution for the lagged dependent variable, which leads to an estimating equation that requires correcting for contemporaneous selection only. The estimator is valid under relatively ...
متن کاملThe Effect of Corruption on Shadow Economy: An Empirical Analysis Based on Panel Data
Quite often shadow economy (SE) and corruption are seen as "twins", which need each other or fight against each other and theoretically can be either complements or substitutes. Therefore, the relationship between SE and corruption has been a controversial and polemical issue and in the spotlight of a remarkable collection of economists and social researchers. The main objective of this study ...
متن کاملHigher Education and Labor Market Imbalances in Iran: A Dynamic Panel Data Analysis
Higher Education (HE) in Iran have been subject to a major expansion and massification in the recent years, in a way that number of students approximately tripled from 2006 to 2016. This would have possibly affected labor market or unemployment rate of the country. Considering both provincial and national level, this study investigates the relationship between HE expansion and unemployment rate...
متن کامل